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UNG-PERIOD EFFECTS I N  NEARLY C-SURABLE 

CAS= OF TEE RESTRICTED THREE-BODY P R O B L ~  

by 

A 
2 Joac him Sc hubart 

J '  
The long-period e f fec ts  i n  nearly commensurable cases of the r e s t r i c -  

t ed  three-body problem w e r e  studied according t o  the ideas of Poincare'. 
The secular and c r i t i c a l  terms of the disturbing function were isolated 
by a numerical averaging process, by use of an IBM-7094 computer. 
i t y  is  found f o r  a l l  r e a l  asteroid o r b i t s  corresponding t o  the cases 
t rea ted  here. Periods of the variations a re  given f o r  some forms of 
planar motion. Planar and nonplanar periodic solutions a re  indicated 
by the  theory. 
and HUM gruqs ~f astercids = 

between the Hecuba and H i l d a  commensurabilities i s  supported. e 

Stabi l -  

No evidence i s  found f o r  a disintegration of the Trojan -.-. _I Rrolwer's explanation of differences 

1. Introduction 

Minor planets with mean motions that are nearly commensurable with 
the mean motion of Jupi te r  o f f e r  a special  problem within the general 
three-body problem. Some groups of minor planets, such as the Trojan 
and the  Hilda groups, have mean motions that  c lus te r  around a commensurable 
value, w h i l e  other comensurabili t ies seem t o  be avoided, as i n  the Hecuba 
o r  Hestia gaps i n  the dis t r ibut ion of the mean motions. m e n  when a gap 
ex i s t s ,  some minor planets have mean motions close t o  the commensur- 
able value. The name-giving planets HecuSa and H e s t i a  are examples. The 
mean motion of Griqua passed the exact value of the Hecuba commensurability 
in t h e  year 1943 (Rabe, 1959). 
papers containing the most important work re la t ing  t o  commensurability 
cases. 
o rb i t s  of long period and an a r t i c l e  by Brouwer (1963) with a theore t ica l  
explanation of the gaps should be added t o  the l i s t .  

B g i h a r a  (1961) completed a long l i s t  of 

Two recent publications of Rabe (1961, 1962) on periodic Trojan 

$his work was supported in par t  by grant number N s G  87/60 from the 
National Aeronautics and Space Administration. 

Astronomisches Rechen I n s t i t u t ,  Heidelberg, Gemany; v i s i t i ng  2 

consultant, Smithsonian Astrophysical Observatory. 
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The restr ic ted three-body problem w a s  taken as the basis of the work 
done here. 
Jupi te r  i s  assumed t o  move around the sun on a c i rcu lar  orb i t .  
gravitational constant, the mass of the sun, and the distance between 
the sun and Jupi ter  were taken equal t o  unity.  
t reated as a small quantity. 
1/1047.355 was ordinarily used, but the theory is  developed with an 
optional value m for the mass of the disturbing body. 
used for two s a t e l l i t e s  of a planet if  one of these is  much smaller 
than the other. 

Therefore the mass of the minor planet i s  neglected and 
The 

The mass of Jupiter i s  
For the numerical computations the value 

It could a l so  be 

It i s  assumed tha t  the r a t i o  of the mean motion of the minor planet 
t o  that of Jupiter is  close t o  the value (p + q)/p, where p and q a re  
re la t ive  prime integers (p > 0) .  Small values of p and q give us the 
most important commensurabilities. Thus the ra t ios  1/1 and 3/2 belong t o  the 
Trojan and Hilda groups, and 2/1 and 3/1 t o  the Hecuba and Hestia gaps. 
For these and similar commensurabilities, the usual secular perturbation 
method does not hold,because one of the angular arguments i n  the ser ies  
development of the disturbing function becomes c r i t i c a l .  This means t h a t  
the terms with t h i s  argument and i t s  multiples give r i s e  t o  long-period 
e f fec ts  of predominant influence, which must be considered i n  a long-range 
perturbation theory. 
t r e a t s  a l l  o r  several  commensurabilities a t  once. 
commensurability case a re  available.  
a t  the beginning of t h i s  century. Hill-(1900) applied Delaunay's method 
t o  minor planet orb i t s  of the Hecuba type. 
with the c r i t i c a l  argument a re  selected in  the ser ies  development of the 
disturbing function. 
onical  variables and a simple method f o r  commensurability cqses, which 
Andoyer (1903) applied t o  the Hecuba case. Curves were published which 
show the essent ia l  features of a l l  possible forms of motion in a plane. 

So f a r ,  no general secular theory i s  known t h a t  
But methods f o r  a single 

Important work i n  t h i s  f i e l d  was done 

The secular terms and the terms 

Poincare' (1932a) suggested a special  system of can- 

When Schwarzschild (1903) worked on the  periodic orb i t s  of the 
Hecuba case and t h e i r  s t ab i l i t y ,  he used the method of averaging t o  
i so la te  the influence of the c r i t i c a l  argument. The value of the con- 
sidered function i s  computed f o r  equidistant points i n  the periodicity 
in te rva l  of a short-period argument, while the c r i t i c a l  and other long- 
period arguments remain a t  a constant value. The mean value then gives 
the isolated influence of the long-period arguments. 
ment i s  necessary. 
the long-period variables i s  possible. 
Gaussian method of computing the secular perturbations i n  the general case 
of planetary motion ( H i l l ,  1882), which now can be used t o  get the long- 
range effects i n  the motion of c e l e s t i a l  bodies by electronic computers, 
if no commensurability ex is t s  (Musen, 1963). Moiseev (1945) has published 
a compilation of the Gaussian, the method described here,and other averag- 
ing methods. 

No ser ies  develop- 
A tabulation of the function f o r  d i f fe ren t  values of 

This method i s  analogous t o  the 
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I n  the present paper PoincarG's variables and method are used, but 
the averaging process was introduced t o  get the interest ing par t  of the 
disturbing function f o r  a selection of commensurability cases. 
a i d  of an IBM-7094 computer the averaged disturbing function could easi ly  
be tabulated f o r  a large set of values of the remaining variables.  
r e s t r i c t ion  i n  the eccentr ic i ty  (e) is required. B e n  the case e = 1 can 
be t reated,  since the transformation t o  the regularizing eccentric anomaly 
i s  made i n  the formulas. Andoyer's curves were repeated and corrected f o r  
the larger  e values. 
commensurabilities . 
computations. 
and H i l d a  cases w e r e  obtained f o r  a nuniber of orb i t s .  
d i r ec t  numerical integration proves t h i s  approximate-commensurability 
theory. It fails  only i n  cases of close approach t o  Jupiter, o r  if the 
reminder  part of the disturbing function must be supposed t o  be very 
important. For the H i l d a  group of asteroids no disintegration of the 
objects occurs, but a quite regular osci l la t ion of long period w i l l  take 
place i n  the mean motions over the millennia. 

With the 

No 

The correspoading curves were found f o r  other 
Nonplanar periodic solutions are indicated by the 

The periods f o r  the long-range variations i n  the Hecuba 
Comparison with 

The canonical system of variables published by Poincare' (1902a) is 
adapted t o  the commensurability ra t io  (p + l ) /p ,  but can eas i ly  be general- 
ized t o  the r a t i o  (p + q)/p 
ra t iona l  number p/q. q may not be zero, but the Trojan case a l so  can be 
t rea ted  with these equations, as i s  shown later. The generalized system 
is given by the equations 

if Poincark's integer n i s  changed t o  the 
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Here the uni t  of the time t i s  fixed by the choice already made f o r  
the other u n i t s ;  rn i s  the mass of the disturbing body, and the equation 

-1 -dx represents i t s  mean fnotion; A is  the reciprocal distance of - 
the minor p lane t  from Jupiter, and 5 is  the indirect  term of the disturb- 
ing function and i s  given by the scalar  product of the vectors from the 
sun t o  the two other bodies. . If the osculating elements of the minor 
planet orbit  referred t o  the sun and t o  the o r b i t a l  plane of Jupiter 
a re  given, Poincar6's variables a re  obtained from the expressions 

u = [(p + q) & - p & cos cp cos i l / q  , 
s =& (1 - cos (91 9 

T = &  cos (4 (1 - COS i) , 

where a i s  the semi-major axis; e is  the eccentricity;  cp i s  the eccentri-  
c i t y  angle, e = sin cp; i i s  the inclination; n i s  the longitude of the 
ascending node; M i s  the mean anomaly; A i s  the mean longitude; and ,E i s  1 
the mean longitude of Jupi ter .  For i = 0 one has T = 0, while 7 becomes 
unnecessary. 
introduces the variables 

S vanishes with e .  For small values of S and T, Poincare' 

x = G s  cos 0 , y = G S  sin 0 ,  

or  

5 = &  COS 7 , TI = &  sin 7 .  

The pa i r  x,y 
system of d i f fe ren t ia l  equations. 
variables x,y, 5,v if they are  small. 

can replace S,(T and 5,y can replace T,T i n  the canonical 
The function F is  regular i n  the 
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T a lso  vanishes with cos Cp . This  i s  i r re levant  i n  the case of 
pLanar motion, as  TJT a re  unnecessary. I n  the general case, however, 
the inclination and the mean longitude become indeterminate. Variables 
describing the direction of the l i ne  of apsides are useful,then, together 
with the mean anomaly and other quantities, which are proportional t o  
cos Q and give the orientation of the o r b i t a l  plane. Several systems 
of canonical variables were found, which are adapted t o  commensurability 
cases (see Appendix 1) 

During the averaging process fixed values are prescribed f o r  U, S, 
T, 6, 7 ,  and M and X are varied in  such a way that cr and 7 stay a t  t h i s  
value. M < 2~ry  covers the 
period of F as a function of M. 
by the expression 

If y = p + q and y f 0 , the  interval 0 
The mean value required is  then given 

1 j- 2rrl" 
- 1  F d M = -  

0 0 

F W d E , where E i s  the eccentric anomaly 
2rry 

F = -  J 
2rry 

and W = dM/aE = 1 - e cos E, as E - e sin E = M. Only A-' and 5 vary with 

E, so that it i s  suff ic ient  t o  compute the mean values of W A 
with respect t o  E t o  get the mean value of F. 
of a t  l ea s t  100 equidistant points covering the integration interval w a s  
used during the numerical computations t o  get the mean of the correspond- 
ing F values. With 100 points, the IEM-7094 electronic computer w a s  able 
t o  de l iver  350 values of the averaged function 

-1 and W 6 
A suff ic ient ly  fine division 

in one minute. 

I .  

The function w a s  computed as  a function of the variables U, cr, 7, 

P = , aDd i. The formulas used a re  the following: 
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s = t p  
same sign, 

& cos cp = (qu - * > / ~ r  - p cos i) , 
u - (S + T )  p/q = &  = s +da cos cp = L ,  

U - ( S  + T)(p + q)/q =& cos Cp cos i , 
e = p  

; S and r = p + q m y  have the  

- 

u ) = T  - * ,  
M = E  - e sin E ,  

A = L 2 (COS E - e) ,  

0 s E C 2 n y ,  

B = L& cos cp sin E , 
X = A  cos W - B s i n  w ,  Y = A  sin w + B  cos u), 

a! = a, - C'2 = + (M - 0) p/y > 

1 
A -  

< = x cos a + Y cos i s h  a, 
- 

2 2 A-1 = [(x - cos a) + CY cos i - sin a12+ +'sin*i] , 
W = 1 - e c o s E .  

If F is replaced by F in  the d i f f e ren t i a l  equations, then U becomes 
a constant. The same holds f o r  the function F . A constant 

C = 1.5 (y  n , / ~ ) ~ / ~ -  nlUq/p was always subtracted from F t o  obtain small 

values of t h i s  function in the interest ing cases. 

For the planar case i = 0 some of the formulas become very simple. 
The value w = 0 was then used. 
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3 .  The Long-period e f fec ts  

A .  The planar case 

In the planar case p is  a function of p and u only, i f  the constant 
U has a fixed value. Curves 
For most c o m n s u r a b i l i t i e s ,  the expressions x = p cos u and y = p sin u 
were introduced t o  draw the curves p(x,y) = const. i n  an x,y coordinate 
system. This is  the method used by Poincare (1902a) and Andoyer (193). 
Poincare'pointed out that when m = 0 the curves become c i rc les  around 
the origin.  An extreme value o r  saddle point of P(x,y) corresponds t o  a 
periodic solution, because no long-period e f fec ts  occur. There is always 
an extreme a t  the origin,  if m = 0, w h i l e  a second extreme i s  present on 
one of the  c i r c l e s  f o r  par t  of the U values. The last-mentioned corres- 
ponds t o  a commensurable mean motion. 
body i s  taken as m, a slight deformation of the surface P(x,y) w i l l  take 
place. One extreme w i l l  s tay a t  o r  near the origin.  If an extreme 
c i r c l e  was present f o r  m = 0, normally a t  least one extreme and one 
saddle point w i l l  s tay near t o  it. 
a standard case f o r  a l l  commensurabilities i n  which q = 1 . Thus a long- 
period osc i l la t ion  is found f o r  the semi-major axis and the eccentr ic i ty  
of the minor DLanet, both quantit ies being connected by t'ne condition 
U = const. 

= const. can be drawn in a p ,  u plane. 

If the mass of the disturbing 

The curves drawn by Poincar6 represent 

In many cases a l ibration i s  performed by u. 
I 

Some simple qua l i t i es  of p(x,y) wiU. now be l i s t ed .  As Poincare 
pointed out, i w i l l  not change if y is  replaced by -y. 
plane y = 0 is  a symmetry-plane f o r  the surface P(x,y). 
ment of F(p,u),which contains Only cosine terms with multiples of qu = qM 
-y(l - A , )  as  argument, is possible. 
u = m/q; n = 0, 1, 2, ... ; give a symmetry-pme f o r  P(x,y). 

O a t x = y = O .  I f m o r e  indicates that when q > 1, one has - = - = 

extremes o r  saddle points are present i n  the v ic in i ty  of the origin, 
they are fixed t o  the (I directions just  mentioned. It can be shown with 
the aidoof Newcomb operators that only a saddle point can appear a t  
(J = 1%) , if  the correspondingJ i s  small and q = 2,3,4,5; p > 0 is option- 
a l .  
ing the  curves P(x,y) = const. 
t o  the s table  types among the figures published by Moser (1958) in a paper 
on the s t a b i l i t y  of the asteroids.  If q = 1 or  q = 3 ,  f o r  a special  value 
of U a curve with a cusp is  present. 
a t  the direct ion u = 180°, and if U is increased then, an extreme that i s  
moving toward the or igin and a saddle point moving outward begin t o  exist 
on the surface P(x,y), s t a r t i ng  from the location of the cusp. 

Therefore the 
A series develop- 

Eerace the expressions 
TMS 

aF a~ 
ax a Y  

The series-development of F (p,  a) is  helpful i n  such a case f o r  araw-  
The only curves found are those corresponding 

In  the case q = 1 the cusp appears 
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For the Hecuba commensurability (p = q = 1) Andoyer (1903) drew the 
curves F = const. i n  6 cases,characterized by different values of U. 
The last two of h i s  f igures should not be used, because h i s  se r ies  
approximation was insuff ic ient  in those cases. H i s  extremes with y f 0 
corresponding t o  asymmetric Deriodic solutions disappear as soon as the 
accurate averaged function F i s  used. 
asymmetric Deriodic orb i t s  could be found i n  the Hecuba case or i n  any 
other corresuonding t o  a mean motion larger  than nl- 

Even f o r  large eccentr ic i t ies ,  no 

Cases with a mean motion smaller than nl can be studied with q < 0, 

y > 0, while r < 0 allows the treatment of retrograde commensurable mean 
motions. 
eccentricity angle has a value in the in te rva l  90 K y < 180 , because a 
negative cos cp reverses the sense of the motion. This follows from the 
formulas for  A and B. The common treatment of d i r ec t  and of retrograde 
motion f o r  a fixed commensurability r a t i o  i s  Dossible with U and p values 
corresponding t o  the whole interval 0 5 cp < 180'. The continuation of a 
c lass  of periodic orbi ts ,  given by extremes f o r  d i r fe ren t  U values, over 
a binary col l is ion o rb i t  (cp = gOo)can be studied i n  t h i s  way. 

Retrograde cases a l so  can be t reated wizh y > 0 ifothe 

If y < 0 and cos Cp < 0, d i r ec t  commensurable mean motions can be 
This allows one t o  handle the Trojan case with p = 1, q = -2. studied a&n. 

With y = -1 one has S 
-1 
because Cp = 180 must be excluded from this theory. 
the Deriodic orb i t s  of Rabe (1961, 1962) a re  available t o  give the long- 
period effects.  

0 and therefore values of 6 in the v i c in i ty  of 
Trojan o r t i t s  with a very small eccentr ic i ty  cannot be included here, 

But f o r  t h i s  case 

The following commensurability cases were studied with the averaged 
function 2 : 
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Figure numbers 

1 - 6  
7 - 10 
11 

12 - 16 
17 

22 - 24 
18 
19 
20 

21 

Hecuba 

Hilda 

Thule 

Hestia 

Trojans 

Hyperion 

The mss of Jupi ter  was used f o r  a l l  cases except the last one, 
where m = .OOO25 w a s  taken as the nass r a t i o  of the s a t e l l i t e  Titan t o  
i ts  cent ra l  body Saturn. T h i s  case is  characterist ic of the perturba- 
t ions caused by Titan in the motion of the  s a t e l l i t e  Eyperion; compare 
the publication of Woltjer (1928). 

For the more important cases a number of figures corresponding to 
d e f e r e n t  U values is  given in Appendix 2 . 
almost a U  the curves F(x,y) = const. are nearly circular.  
osci l la t ion of the elements a and e w i l l  be slnall and a l ibrat ion of the 
angle u is  very improbable. 
with the a id  of a data-plotting machine. 
by a IBM-7094 program t o  get the points i n  the p,a -plane comsponding to 
a s e t  of fixed values of F, when the tabulation of F(p,o) w a s  given. 
p and u were then taken as polar coordimtes for the plotting. 
the canonical variables x and y are the rectangular coordinates. 
c w e s  for the Trojan case were drawn with p and (I as  rectangular coordin- 
a t e s  . 

For q values larger than 3, 
~ h u s  the 

A l l  the figures published here were drawn 
Lhear interpolation w a s  made 

Therefore 
Only the  



B. Nonplanar cases 

If three-dimensional motion i s  treated,  F i s  a function of 0, T, p, 
and i, while U is  a constant. 
discussion here, but some qual i ta t ive remarks are possible. If m = 0, the 
function depends only on S + T. For appropriate values of U it has a 
minimum at  a special  value of S + T, which corresponds t o  a commensurable 
mean motion. If m # 0, the combination S + T = 6 (1 - cos cp cos i) w i l l  
be restricted,  because 
Since the constant U gives a second condition fo r  & and cos cp cos i, 
these quantities w i l l  be res t r ic ted  t o  f i n i t e  intervals .  A s  i n  the planar 
case, it does not imply  i n s t a b i l i t y ,  accoding  t o  t h i s  theory, i f  the e x i s t -  
ing minor -planet orbi ts  are considered . 

The problem is too complicated for  a general 

w i l l  be constant and depends mainly on S + T. 

Nonplanar periodic orb i t s  are indicated, i f  the four independent 
variables can be chosen i n  such a way tha t  the p a r t i a l  derivatives of 3 
become equal t o  zero. 
F does not change if 0 and T change sign a t  the same moment. If T i s  aug- 
mented by n or o by 2n, P remains unchanged. 
a lso can be augmented by TT without a change i n  F. This can be proved w i t h  
the aid of the ser ies  developwnt of the disturbing function. If F is  now 
treated as a power ser ies  i n  x,y, s,?, only special  combinations of the 
variables have nonzero coefficients.  If q is  even, it can be shown tha t  
x = y = 0 i s  a particular solution of the d i f f e ren t i a l  equations. 
long-range effects  i n  5 
F(S,v) = Const. Periodic SOlUtiOns w i l l  appear on the 5 and 
always i s  present a t  the origin, where i = 0. This was found when the 
case p = 1, q = 2 w i t h  U = 0.696 was t reated as an example, while no 
periodic solutions could be detected fo r  p = q = 1, U = 0.8 except the 
P h n a r  ones. 
solutions exis t  w i t h  y = 0 and an x value close t o  zero. 

Some simple qua l i t i es  of F are very useful fo r  th i s .  

IT q i s  an even number, CT 

The 
and 7 can be studied then by drawing the curves 

axes; one 

But i n  the case p = 2, q = 3, U = 0.74, nonplanar periodic 

C. The ef fec ts  as a function of time 

So far, only e f fec ts  have been mentioned tha t  could be evaluated 
w i t h  the a i d  of the integral  F = const. of the equations of motion. 
To obtain the dependence on t i m e ,  numerical integration of the d i f fe ren t ia l  
equations i s  necessary. 
They a l so  can be obtained by the averaging process described fo r  F, but a 
series development was used here f o r  the computation of the derivatives of P i n  
the pkar case, if ' the v d w s  of P were suff ic ient ly  small. AnIBM-7094 program 
was  prepared t o  do the integration of x, y, and 4 as functions of time, 
if the series development i s  known. Laplace coefficients (Izsak and Benima, 
1963) and special Newcomb operators for  canonical elements, prepared by 
Izsak and others, are available t o  get the development of P. 
IBM-7094 program doing the accurate numerical integration of any minor- 
planet case of the  three-body problem i n  rectangular coordinates was 
used t o  check the theory described here and t o  indicate i t s  l imitations.  
1%- gave the most re l iab le  way t o  get the time dependence of the long-period 
e f fec ts  i n  special cases. 

The p a r t i a l  derivatives of F' are needed fo r  th i s .  

Another 
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If a saddle point i s  present for  the surface ?, the corresponding 
periodic solution w i l l  be unstable. Asymptotic orb i t s  w i l l  s tart  from 
such a solution. The time required to approach o r  t o  depart from the_ 
unstable periodic solution i s  inf ini te .  An extreme of the  function F 
gives a stable periodic solution. 
it can be obtained with a variation theory. 
derivatives of ? were computed by numerical d i f fe ren t ia t ion .  The Hecuba 
and H i l d a  comensumbil i t ies  were treated i n  t h i s  way t o  get the periods 
of the long-range e f fec ts  i n  the planar case. Orbits that d i f f e r  more wide- 
l y  from a 
unless they are close t o  an asymptotic o rb i t .  
solutions with periods of the var ia t ional  orb i t s  is  given here. 

The forms of motion in the v ic in i ty  of 
The necessary second-oder 

periodic solution dl1 have periods of the same order of magnitude, 
A list of s table  periodic 

IIECURA p = l  q = l  a = O  

e cos cp Period (Jupi ter  = 1) U P Ja 

793 .058 791 -065 1.00 37 

.80 .121 793 .136 99 39 

.82 .231 -793 - 257 97 37 

87 - 391 794 -43 90 36 

96 577 794 .61 79 9 
1.1 -783 794 79 .61 30 

1.3 1.006 794 -93 36 24 

1.5 1.180 - 794 9 99 .11 20 

1-7  1.346 794 - 99 -,14 17 

1 - 9  1.487 794 92 - 0  39 17 

2.1 1.616 9 794 76 -.a 21 

2.3 1-736 -793 .44 -.go 57 
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U 

.882 

.887 

90 

92 

95 

1.0 

1.1 

1.2 

1.4 

I 1.6 

The 

HILDA 

P 

,098 

.120 

.164 

.216 

277 

* 356 

.476 

571 

725 

.852 

p = 2  

e 

.io5 

.128 

* 175 

.230 

-293 

374 

.492 

.582 

- 715 

,811 

q = 1  

cos cp 

9 99 

99 

98 

97 

96 

-93 

87 

.81 

70 

58 

a = O  

Period (Jupi te r  = 1) 

23 

23 

23 

22 

22 

21 

19 

16 

10 

6 

mass of Jupiter w a s  used here and the  periods given are multiples 
of the  o r b i t a l  period of Jupiter.  I n  t h i s  un i t  the  synodic periods of 
Hecuba and H i l d a  are close t o  1 and 2 .  The periodic solutions found here 
approximtely as minima of F (0,~) r ea l ly  ex i s t ,  as could be shown by 
accurate numerical integration f o r  some of the cases. 
t rea ted  these periodic solutions, and Poincard (1902b) mentioned t h e i r  
connection with the set of noncomensumble nearly c i r cu la r  periodic 
o r b i t s .  This set i s  interrupted a t  commensurabilities with q = 1, as 
Poincare’ pointed out .  
here.  
exists between very eccentric and retrograde periodic orb i t s .  

Sckrwarzschild (1898) 

H i s  predictions can be proved with the  theory given 
The l i s t  given here indicates t h a t  i n  the  Hecuba case, a connection 

The periods of the long-range e f f ec t s  of some accurately computed 
minor-planet orb i t s  proved t o  be about equal t o  o r  s l i gh t ly  smaller than 
the  corresponding value i n  the  l i s t s .  
figure 3 ) ,  the variables x and y were obtained as functions of time, as 
described. By taking start-values from the re la t ions  x = xo, y = 0, six 

curves were obtained which surround the point corresponding -to the periodic 
solution and a re  enclosed by the curve corresponding t o  an asymptotic o rb i t .  
The periods are  given here i n  the same un i t  as before: 

For the  case p = q = 1, U = 0.8 (see 
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0 
X 

+o. 01 
+O. 03 
+O. 05 
+O. 07 

+O.ll 
+0.09 

Period (Jupi ter  = 1) 

49.9 
41.8 
39.0 
38.2 
38.5 
39-0 

To give a rough estimate, the period of the long-range e f fec ts  i s  
equal t o  about 40 periods of Jupi te r  f o r  Hecuba-type orb i t s  and t o  about 
20 f o r  Hilda-like cases. For the Trojan planets the corresponding value 
i s  known t o  be 13 (see €&be, 1962). This corresponds t o  about 500, 250, 
and 150 years i n  the three cases respectively. 

A .  The gaps 

A s t a t i s t i c a l  explanation f o r  the gdps in  the dis t r ibut ion of' the 
mean motions of the asteroids w a s  given by Brower (1963). H i s  conclusions 
are based on a theory that is  adapted t o  the single commensurability cases, 
as w a s  done here. 
cases. While large gaps are present f o r  the commensurability ra t ios  
2/1 and 3/1, and less important ones f o r  ra t ios  between these with larger  
q values, an accumulation of minor planets i s  found f o r  the r a t io  3/2. 
This is the very well-defined Hilda group. To explain the difference 
between t h i s  case and the others with gaps, Brouwer pointed out t h a t  there 
are mny more less-important commensurabilities crowded around the 3/2 
case than around the 2/1 case, i f  equal intervals  i n  the mean motion 
are considered and comensurabili t ies with q up t o  9 are marked i n  them. 
This is  not an  explanation if the osci l la t ion i n  the mean motion caused 
by the commensurability i s  s m l l e r  i n  the 3/2 case 
But othervise the theory can f a i l  f o r  the H i l d a  case, a s  the neal;by 
cammensurabilities can temporarily became important and must be included 
in any theory of the long-range e f fec ts .  

This theory indicates a gap f o r  a l l  commensurability 

than i n  the 2/1 case. 

The osci l la t ions in the mean motions f o r  the Hecuba and H i l d a  case 
can be found from drawings such as those i n  f igures  1-10, if  the formula 

'& = U - .5 p Maximum values of the osc i l la t ion  found f o r  
Some U values are l i s t e d  here. The difference An of the extremes of the 
mean motion i s  given i n  seconds of a n  per day, together with the corres- 
ponding extremes of p .  The mean motion of Jupi te r  i s  about 299" i n  the 
same uni t .  

2 p/q i s  used. 
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HECUBA p = l  q = 1  

U P 1  

' 795 .02 

.80 . 00 

p 2  

13  

.18 

.809 .10 23 

.82 .16 

87 33 

.28 

.44 

HILDA p = 2  q = l  

U P 1  p2  All 

.88 .01 - 1 3  27" 

.885 .02 

895 07 

-91- .12 

-93 17 

.16 39 

.20 5 2" 

.24 66" 

-29 83" 

The osci l la t ion i s  found t o  increase with the mean eccentr ic i ty ,  
characterized by the mean of the two values of p given. 
offers the la rger  osci l la t ions,  Brouwer ' s  explanation is  supported. It 
m i g h t  be added t h a t  H i l d a - t y p e  planets are more sensi t ive t o  addi t ional  
e f fec ts ,  as moderate eccent r ic i t ies  can cause close appmaches t o  Jupi ter .  

A s  the  H i l d a  case 

Figures 1-6 i n  Appendix 2 give an impression of the osc i l la t ion  i n  p 
f o r  the Hecuba case.  Figures 3 and 4 correspond t o  f igures  9 and I2 
respectively i n  the paper by Andoyer (1903), but i n  the work reported i n  
the present paper no asymmetric periodic solutions were found f o r  t h i s  case.  
The periodic solutions with a = 0 have been l i s t e d  previously. The unstable 
periodic solutions with (I = 180 
shown i n  figures 2, 3, and 4. 
f o r  a minor planet, whose man motion passes through the Hecuba gap. 
interest ing question i s :  how many of the  numbered asteroids  w i l l  do so 
during a 500-year acriod? 

0 are cannected with nearly c i r cu la r  ones, as i s  
I n  the introduction an example was given 

An 
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Figures 12-& are  given f o r  planets close t o  the Hestia gap. 
o rb i t  always i s  given a t  the or igin.  
W h i l e  eccentric periodic orb i t s  begin t o  develop from it, it i s  found t o  
be unstable f o r  a short  in te rva l  i n  U (see a l so  v . Zeipel, 1915). 
i s  re la ted t o  the 5/2 commensurability 
largest  gap between the before-mentioned Hecuba and Hestia gaps. 
t o  
t o  develop f romthe  one that i s  almost c i rcu lar .  
q > 1 examined here. 

A periodic 
It i s  c i rcu lar  i n  t h i s  approximation. 

Figure 17 
r a t io ,  which corresponds t o  the 

only two types of periodic solutions begin 
According 

the symmetries of t h i s  case, 
This holds f o r  every 

B.  The groups 

The curves shown in figures 7-10 f o r  the Hilda case are analogous t o  
those f o r  the Hecuba commensurability. 
the theory developed here w i l l  hold only if the osci l la t ions in  the semi- 
major axes remain small. This w i l l  be t rue  f o r  cases with a l ib ra t ion  in 
CJ around zero with small amplitude. It i s  interest ing t o  look a t  the 
planets with large eccentricit ies,  where u is  wel l  defined. The l i s t  
given here was computed with tne a i d  of t ab les  of just  these objects 
p1Alished by Tshebotarev and Boshkova (1953). Two objects were added, one 
of which i s  Comet Oterma (Marsden, 19611, tha t  temporarily- %elm@ t= the 
H i l d a  group. 

For the asteroids of the Hilda group 

The elements of the comet f o r  1950 were used. The mean motions 
are l i s t e d  i n  seconds of arc per day. 

Object 0 

15 3 

190 

361 

499 

748 

958 

1038 

1~62 

1180 

HILDA 

ISMENE 

BONONIA 

mIA 

smsA 
ASPILNDA 

TUCKLA 

LAFUSSA 

RITA 

- 38' 

4 

40 

- 34 

65 

11 

26 

22 

-58 

v 
9 O  

10 

12 

13 

10 

ll 

14 

6 

10 

i 

8' 

6 

13 

2 

2 

6 

9 

2 

7 

Mean motion 

450" 

453 

457 

452 

453 

455 

456 

450 

449 
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Object 

1202 MARINA 

1212 FRANCmTE 

1268 LIBYA 

1345 POTOMAC 

1439 VOGTIA 

1512 1939 

1529 1938 BC 

1578 KIRKWOOD 

-- OTERMA 
I 

LT 

-5O 

35 

32 

-7 

- 29 
14 

-5 3 

72 

-172 

'p i 

12O 3O 

10 8 

6 4 

10 11 

7 4 

10 7 

11 9 

13 1 

8 4 

Mean motion 

458"' 

448 

455 

450 

451 

451 

444 

451 

448 

The l i s t  shows c7 values surrounding 0' f o r  a l l  objects except the 
comet. A s  it i s  improbable tha t  t h i s  i s  due t o  the epoch f o r  so many 
cases, one can expect l ib ra t ion  for a l l  asteroids of the Hilda group, and 
the s t ab i l i t y  of the group i s  indicated by the theory. SmallvaJues of 
1 0 1  prevent close approaches t o  Jupiter,  while values around 180 allow 
t h e m .  This difference between the Hilda-asteroids and Comet Oterm was 
pointed out by Marsden (1962). Indeed, a close approach of the comet t o  
Jupiter i n  1963 completely changed the orbi t ,  so that the theory given 
here i s  disproved f o r  that case. It seems t o  be important t o  prove it for 
a t  l ea s t  one of the asteroid orbi ts ,  as  Tshebotarev (1953) calculated that 
a complete disintegration of the Hilda group would occur within the next 
1000 years.  I n  the 
present paper, accurate numerical integration on the IB4-7094 computer 
was used t o  find the variations of the semi-major axes of two t e s t  o rb i t s  
that a re  s i m i l a r  t o  the o rb i t  of the planet Hilda. 23000 integration steps were 
done i n  both cases t o  cover a 1000-year jn te rva l .  I n  the f i r s t  case the 
eccentricity of Jupi ter  and the inclination were neglected, w h i l e  i n  the 
second case these elements were taken into account. After the short- 
period effects are  smoothed out, a quite regular, sinusoidal o s c i h t i o n  
remains i n  the semi-major axes taken as  function of the t i m e .  I n  the 
f i r s t  case a osci l la tes  between 0.756 and 0.767, while i n  the second the 
amplitude i s  only one-half as large.  
f i r m  the values given by the theory. 
cannot be applied t o  such a long time in te rva l .  
the whole Hilda group of as teroids .  
l ib ra t ion  of cr f o r  H i l d a  already has been done by Hirayama and Akiyama (1937). 
Akiyama (196.2) publisned a continuation of tha t  integration. 
noncircular orbi t  for Jupiter, t'ne l ib ra t ion  of o i s  influenced by additional 
e f f ec t s .  

I 
I 

He used a periodic o rb i t  and var ia t ional  equations. 

The periods of the osci l la t ions con- 
This means that Tshebotarev's method 

Stab i l i ty  i s  indicated f o r  
A numerical integration t o  show the 

As he takes a 
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The minor p l a t  Thule i s  the only object known as an example of 
the 4/3 commensurability. A s  its eccentricity is  very small, the theory 
indicates a small osc i l la t ion  i n  the Smni-major axis and thus s t ab i l i t y ;  
compare figure 11. The Sam w i l l  hold f o r  the Hilda-group m e m b e r s  w i t h  
small eccentr ic i ty .  No other minor planets have mean motions i n  th i s  
range except the ones belonging t o  a group. 

Groups belonging t o  the 1/1 commensurability are represented by the 
The l a t t e r  w i l l  not be t reated Trojan planets and Jupi te r ' s  s a t e l l i t e s .  

here. 
Trojan case. 

150 L = -1. Thus 

the last figure corresponds t o  an eccentr ic i ty  varying around 0.5 and a 
semi-majoraxis Close t o  1 , w h i l e  cos cp, $, and the mean motion are 
negative. 2 u i s  equivalent t o  the wazi azg~laz difference between 
Jupi te r  and the Trojan as  Been f rom the s m .  
can be expected fo r  u GX 30 j compare the paper by Willardo( 1913). 
the figures, u was used as absci sa as o r d i F t e .  A 90 interval  i s  
given i n  u, s ta r t ing  with u = 13', ;39, and 33 respectively, in figures 
22, 23, and 24. A s  can be seen from the figures,  the expected periodic 
solutions are stable.  The corresponding a-values become larger w i t h  
increaging eccentricity.  
0 = 90 . The curves are symmetric w i t h  respect t o  u = 90 . 

The l a s t  three figures given i n  Appendix 2 are r e l a p d  t o  the 
Figures 22, 23, and 24 are given f o r  cp = 170 , 160°, and 

0 respectively, as  U = -  cos2 re w i t h  p = 1, q = -2, and 2 

Therefore a periodic orb i t  
In 

An unstable Wrio3ic solution i g  present f o r  

Libration is  possible around the s table  periodic solutions, i n  ana- 
logy t o  the well-known forms of mation w i t h  small eccentricity.  Orbits 
w i t h  u passing t5e value 90' are indicated i n  figures 22 and 23. They 
close symmetrically around a second stable periodic solution inanalogy 
t o  the horseshoe-shaped orb i t s  described by Rabe (1961). 
forms of motion start o r  end a t  the unstable periodic solution, but it 
i s  by no means proved tha t  an orb i t  s tar t ing there a lso W i l l  end there 
asymptotically, as th i s  theory i s  Only an approximation. Some Trojan 
orb i t s  can even change from a l ibrat ion of large amplitude around one 
of the s table  periodic solutions t o  the other form of motion w i t h  u 
passing 90'. 
Jupiter,  using accurate numerical integration. Rabe ag3 Schubart confirmed 
th i s  fo r  the mass value of Jupi ter  by an unpublished example integrated 
with the computer of the University in  Heidelberg, Germany. Such a change 
from l i b ra t ion  t o  nonlibration, effected by crossing the curve tha t  cor- 
responds t o  an asymptotic solution, may also be possible f o r  other com- 
mensurability cases. 

Asymptotic 

"hiiring (1959) found t h i s  f o r  disturbing masses larger  than 
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C .  The outer commensurability cases 

There i s  only one minor planet, Hidalgo, with a semi-major axis 
considerably larger  than 1 . 
surabi l i ty  r a t io  and has a very eccentric o r b i t .  
commensurability with the disturbing mass on the inner o rb i t  and the 
disturbed mss on the outer i s  given by two Saturn s a t e l l i t e s ,  as mentioned 
before. 
the mass m = 1/4000 corresponding t o  that case. 
t o  a small object outside the o rb i t  of Jupi te r  
most important outer-commensurability r a t io s .  

But it i s  not dominated by a single commen- 
An example of a 

Figure 21  w a s  drawn by use of the commensurability r a t i o  3/4 and 
Figures 18, 19, and 20 re fer  

and represent the three 

Figures 20 and 21 both show the poss ib i l i ty  of a l ib ra t ion  of u about 
180°, which i s  
the oscil lations in the mean motion remain small,and close approaches t o  
the disturbing body are avoided, as w a s  found f o r  the FLLlda group. 

indeed realized in  the case of the Saturn satellites. Then 

Figures 18 and 19 contain asymmetric periodic o rb i t s .  For the commen- 
surabi l i ty  ra t io  1/2, such orb i t s  have already been found and proved by 
Message (1958, 1959). For the r a t i o  1/3 no d i r ec t  proof by numerical integra- 
t ion  f o r  an asymmetric solution has yet been done. 
the r a t i o  1/1 i n  the stable periodic solutions a l so  contains asymmetric 
periodic orbi ts ,  it i s  indicated t h a t  ra t ios  with the numerator 1 favor 
the occurrence of t h i s  type of solution. Cases with p + q = f 1 differ 
from a l l  others by the f ac t  
the computation of F i s  different  from zero. 
seem t o  produce the asymmetric periodic orb i t s .  

A s  the Trojan case with 

t h a t  only then the mean value of 5 used f o r  
Thus the influence of 5 
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Appendix 1: Canonical Variables 

The following equations given without a proof suggest new systems of 
canonical variables. 
A transformation t o  separate short-period and c r i t i c a l  arguments also 
can be done here. 

These are useful, i f  cos cp i s  small o r  equal zero. 

Ja dM + Ja cos cp dw + Ja COS 'p COS i d JL 

Ja dM + Ja cos cp cos a, dg + Ja cos cp cos i a+ 

Ja dM + Ja cos cp PzQx d <Px/P,) + Ja COS cp Pz&y d(Py/PZ) 

Ja dM + Ja cos (p (B, + R y '  d [Px/(l + P z ) l  

+ /a COS cp ( Q ~  - R,) d Py/(l + pz)1 

fa dM + Ja cos cp d w  + Ja cos cp cos i d(JL - A,) 

Ja dM + Ja cos cp cos al dg + Ja cos 'p cos i d( I/I - A,) 

U d(qM/y) + Ja cos (p cos a,dB + Ja cos cp cos i d[JI - 1, + PM/Tl 
- 

w = T - u i s  the distance of the perihelion from the ascending node. 
-. 
P = (Px, P 
of the direction t o  the perihelion 

Pz) = (cos f3 cos 4 , cos f3 sin 4 , s i n  8) i s  the  unit vactor 
Y7 

i f  Jup i t e r  mves i n  the x,y plane. 
+ +  + 

and also are un i t  vectors with (P Q) = 0 , R = [? X g] and < giving 
CY 1 is  defined 0 

the  direction t o  the object,  if the  t rue  anomly i s  90 . 
by COS al = sin i COS ($ -A) . 

-22 - 
~ 



X 

0 
I1 
3 
c - 

II 
U 

N 
e, 
k 
3 
w 
;4" 

* - 
II 
a 

(u 

i 
0 

e, 
k 
5 w 
b-4 
.r( 

h 

0; 

x 
a, w 

s! 
-A 

10 
a, 
k 
5 
M 
(H 

e, 
d 
-P 

.r( 

(H 
0 

10 

l-4 a 
X w 
v 



x 

d- 
(\I 

0 
I 

x 

N 

I 
0 

N 
0 

I 



X 

OD 

0 
I 

X 

(u 
Fr) 
0 

I 



x 

(u 

I 
0 

x 

00 
00 
0 

II 
3 
- 
II 
0- 

cc 



X 

6, 
0 

x 

0 
6-4 

d- 
cu 
I 
0 



x 

x 

0 
0 



0 
I 

x 

0 
I 

0 
I 



X 

0 
n 
3 

W - 
0 

I 

X 

cu- 
ll 
0- - 
II 
Q 

0 
I 



x 

a0 
cu 
0 
I 

x 

co 
l-l 

E 
l-l 



x 

0 
N 

I 

x 



Y 

-0.16 

-0.16 
p=4, qZ-1, U=1.0806424 

m=.00025 

Figure 21 



. 

-. 
N 

I 

8 . .  

a . .  
8 

0 $ . 
, 

# . 
. .  ..... . a  

' I  0 .. . .  . .  . .  . .  8 .  . . .  . .  . . . . . .  .. 
- 8 .  . . .  . . .  .- z . . .  . . .  0 0 .. . s ** 

. .  
. . .  . . .  , 

. . . . .  . . . . .  . . . . . .  - .  I 
II 

8 
._ . . . . .  . . . . .  I - . .  . . .  I - 8 8 . . . . .  . . . . .  . . . . .  n 

. .  l o ;  . ! .  . . . . .  . . .  . . .  
I 

I I &  
8 . . . . .  I 

. . . . .  a . . . . .  
* *  c . . . . . .  . ....e 

= * + e  . . .  .. . . . . . . . . .  . . e .  # 
. e  . 

.... . -. . . . . . . . . . . . . .  .* 
.. 

. . . . . . . . .  
z 

0 .  
. e -  ............ . .  0 .  0 . .  * * -  :- :. . .  

* . : *  . . . . . . . . . . . . . .  . : : ." ; 2 : : : : : : : :*: : : : : 

_. . . . . .  
.* 

. .- 



b 
. .  . .  . .  'c . .  

. . .  . 
8 . 

d- 
m o  

0 
0 . .  
d, I . .  

0 

e . 
. . - . .  .* . 

- 8  c . .  
8 .  . .  

s - 0  
. .  . .  . . .  . 5 . .  . * e .  

e . :  .- . . .  
8 : .  f . . .  . 
. . .  4 ... e S b e  ... - .  . . . .  0. . . . .  . . .  8 .. .* b g .  . 0 . .  

. e . .  . . . .  .* -. S S . .  * . . .  . . . . .  . . . .  8 . . . . .  
.= 8 . -  

9 .  

. 0 . .  
. . . . .  . . . . .  . . . .  . . . . . .  8 . . . . .  

. 
0. 

. .  . . . . .  . . . . . .  . . . . . .  
4 . . . . .  n -  . I . . . . .  ... .@ . . . . .  . . . . .  . . . . . . .  ........... .. 8 . .  

. . *  
.* . . 9 .. 

= . =  . . . . .  .. - *  . - ........... . . . - . - : . f  .. : . :*e . . . . . . . . . . . .  : : ; :-: ... ........... . . . . . .  * . : . ' * . . . .  .. 9 

I 
II 
3 

L 

- 0  
a, 

0 --m cu 



. . .  . . .  b . .  I . . .  I f 0. 

- 8  

b 

e . . -  . .  
I . .  

S 

8 a 

. .  
8 

0 

S 

. .  
. 

S 

# . . . .  * *  . .  . .  - 8  .* 
, . .  : *  . .  . * e .  t . . .  *. . . .  .* . .  
.* . . .  . .  . . .  

. e .  

. # .  . . . . .  8 .  

0 . .  . . . . . .  . .  . . . .  . . . . .  . . . .  . . . .  
. . . .  . .  . . . .  

I . . . .  . . . .  
. *  . . . .  . . . :  . . \ .  . 0 , . . *  . . .  ........ .* . : . . . . . . .  . . . . . . . . .  . . . . .  * ... .. . * . -  . . . a .  .. . 

. .  
. *  8 

.. 
0 .  - . .  . . . . . . . . . . .  . .  

I 

0 
I 

I I  

3 

I I  
W 

L - 
I 1  
Q 


